Test Specifications for Highly Automated Driving Functions: Highway Pilot

Hardi Hungar
Team Leader Verification and Validation Methods
Institute of Transportation Systems, German Aerospace Center (DLR)
Joint work with: Frank Köster, Jens Mazzega

This research was partially funded by the German Federal Ministry for Economic Affairs and Energy, Grant No. 19A15012F (PEGASUS), based on a decision by the Parliament of the Federal Republic of Germany. The responsibility for the content lies with the authors.
Introduction

Application: Highway Pilot

- Automated driving on a highway under regular conditions (SAE level 3)
 - Passenger car
 - Highway or similar equipped road
 - Speed limited to 130 km/h
 - Ordinary weather conditions

Included
- Stop & Go
- Changing lanes
- Overtaking
- Emergency manoeuvres
 - Braking
 - Evasive actions
- Fallback when reaching system boundaries:
 - Driver (with sufficient takeover time)
 - Risk minimizing maneuver (if driver does not respond)

Excluded
- Entering the highway
- Exiting the highway
- Bad weather
 - (very) Slippery surface
 - Heavy rain, snow, fog
Introduction

Problem: How to prove safety of a Highway Pilot?

- **ISO 26262**: Standard „Road Vehicles – Functional Safety“ for developing systems with electronic elements
 - Risk-based approach to safety

 - Risk $\approx \sum_{h \in H} E_h * C_h * S_h$
 - H: Set of harmful events h
 - E: probability of occurrence (precisely: expected number per time unit)
 - C: controllability (here: probability of *not* avoiding an accident)
 - S: severity of event (injuries, fatalities)

- Safety requirement:
 - The risk must be „minimized“
 - The definition of „minimal“ may vary

- Proving safety of an implementation of the Highway Pilot
 - ¿Testing a Highway Pilot on the road under supervision of a safety driver?*
 - May take a while (one estimate: some billion kilometers, $\sim 13 \times 10^9$ [1])

Approach
Specification Concept: Scenarios

- A **scenario** (after [2]) describes a traffic sequence
 - Here: always with one distinguished **ego car**
 - Consists of
 - **scenes** (snapshots), connected by
 - **actions** of the ego car, and
 - **events** coming from the environment (traffic participants or other)

- Example scenario „Cut In“ (*Illustration*)
 - 1: **Ego vehicle** is following **Lead vehicle**, other vehicle is approaching from behind
 - 2: **Other vehicle** overtakes and moves into ego lane (*events*)
 - 3: **Other vehicle** has cut in (*event*)

Approach
Hierarchy of Tests: Virtual, Proving Ground, Field

• **Simulation**
 • Embed HAF control into traffic simulation software
 • Run extensive tests

• **Proving Ground**
 • Targeted experiments in controlled environments
 • Validation of simulation results

• **Field Data**
 • Measuring parameters of exposure
 • Evaluating accident data
 • Validating simulation results in reality
Approach
Safety Goal: Outperform the Human Driver

Risk Distribution Human Driver

- Congestion
- Lane change
- Cut in
- Following
- Adverse Weather

Net improvement over human driver

Risk Automation

Outperform human in each category

- Congestion
- Lane Change
- Cut in
- Following
- Adverse Weather
- Automation errors
- Safety Gain

New accident causes

Illustration – not representing valid data
Scene Definition

- A *Scene* describes a particular state
 - **Traffic infrastructure**
 - Lanes, regulations
 - Geometry: curvature, elevation
 - **Environment conditions**
 - Surface grip (wetness, …)
 - Perception: Light, sun, fog, sensor obstacles, etc.
 - **Traffic**
 - Vehicles: Ego and usually other
 - Type
 - Position, speed, orientation
 - Blinker, brake lights
Scenario Definition

- A **Scenario** describes a particular evolution of scenes
- It consists of
 - A (finite) timed sequence of scenes
 - A fully defined *start scene*
 - Transitions between subsequent scenes, with
 - Actions of the ego vehicle
 - Events from the environment (other vehicles, conditions)
 - Evolutions (passage of time)
- One line of evolution (of potentially many)
Scenes and Scenarios Definition (Elaboration)

- **Scene** parameters need not be fully defined
 - **Field data**: Precise values (ground truth) are not always available
 - **Specifications**: Ranges serve to capture a class of similar situations

- **Scenarios**
 - Action, event and time parameters can be imprecise
 - The **discrete structure** remains **fixed** in one scenario
 - E.g.: Lane change performed vs. lane change aborted go into different scenarios
 - Discrete variability captured in sets/**classes** of scenarios
Scenario Classes
Functional and Concrete Scenarios

- **Functional Scenario**
 - Textual / graphical description of a class of scenarios
 - Rough parameter ranges (if at all restricted)
 - May include discrete variability
 - **Usage**: High-level specification
 - Examples: Cut-in, Cut-through, Lane Change, Overtaking, etc.

- **Concrete Scenario**
 - Fully defined sequence
 - Parameters within tight bounds
 - One line of evolution
 - **Usage**:
 - Capture field data or simulation runs
 - Define test cases

One functional scenario describes a large set of concrete scenarios.
Scenario Classes
Functional Scenarios

• Functional Scenario
 • Textual / graphical description of a class of scenarios
 • Rough parameter ranges (if at all restricted)
 • May include discrete variability
 • Usage: High-level specification
 • Examples: Cut-in, Cut-through, Lane Change, Overtaking, etc.

• List of functional scenarios
 • Free driving
 • Following
 • Lane change
 • Overtaking
 • Cut-in
 • Leave lane
 • Cut-through
 • Slow traffic
 • Stop & Go
 • Jam
 • Lane violation
 • Incident traffic
 • Wrong-way driver
 • Obstacle
 • Incident environment
Scenario Classes
Functional Scenario Examples: Cut-in / Incident Environment

Cut-in
- Start situation
 - Ego car (E) drives on highway lane
 - Other vehicle (C) on adjacent lane
 - Potentially further vehicles involved
- Evolution
 - C moves into E-lane in front of E
- Criticalities
 - C cuts in with little distance to E
 - C brakes after cutting in
 - Low TTC(E,C)

Incident Environment
- Start situation
 - Ego car (E) drives on highway lane
 - Varying traffic situations
- Evolution
 - Sudden change of environment conditions affecting traffic
 - Heavy rain/snow
 - Fog, low standing sun
 - Wet road surface, ice/white frost
- Criticalities
 - Sensor reliability reduced
 - Grip reduced/lost
Scenario Classes

Logical Scenarios

- **Functional Scenario**
 - **Usage**: High-level specification

- **Logical Scenario**
 - One line of evolution
 - Parameter ranges with occurrence probability distributions
 - Represents set of concrete scenarios
 - **Usage**: Main constituent in the *test specification*

- **Concrete Scenario**
 - **Usage**: Define test cases

Cut-in (left, from behind) (regular traffic situation)

- **Step 1**: Velocity [m/sec]: E, L: [22-36]; E-L: [-4,4]; C: [23-67]; C-E: [1,45]; Position [m]: L-E: [33,100]; E-C: [0,30]; Distributions: may be multivariate binomial (nontrivial correlations), or multivariate gamma-distributions

- **Step 2**: Cut-in starts (C crosses lane marking) Δt: [2,20]
 - Velocity [Δ m/sec]: L: [-7,+7]; C: [-50,+5]; C-E: [-5,40]; C-L: [-12,50]
 - Position [m]: L-E: [25,110]; C-E: [1,60]; L-E: [5,100]
 - ...

- **Step 3**: Cut-in completed (C has crossed lane marking halfway) Δt: [0.5,4]
 - Velocity [Δ m/sec]: ...
 - ...

Figures given as illustration
Deriving Scenarios

Logical Scenarios are derived systematically from Functional Scenarios
- One Functional Scenario (or a combination of Functional Scenarios) gives rise to a number of Logical Scenarios
 - Cut-in (left, from behind)
 - Cut-in (left, front)
 - Cut-in (left, fall-back)
 - Cut-in (right, from behind)
 - ...

Concrete Scenarios are instantiations of Logical Scenarios
- One Logical Scenario represents a large (infinite) number of Concrete Scenarios
 - Step 1:
 - Velocity [m/sec]: E, L: [22-36]; E-L: [-4,4]; C: [23-67]; C-E: [1,45];
 - Position [m]: L-E: [33,100]; E-C: [0,30];
 - Distributions: may be multivariate binomial (nontrivial correlations), or multivariate gamma-distributions
 - Parameter instantiations
 - Relative frequencies according to probability distributions
Criticality of Scenarios

Criticality of a scenario
- \(\sum_{h \in H} C_h \times S_h \)
 - \(H \): Set of harmful outcomes \(h \)
 - \(C \): probability of occurrence of the outcome
 - \(S \): severity of the outcome (injuries, fatalities)

Severity
- Classes in ISO 26262
 - S0: No injuries
 - S1: Light and moderate injuries
 - S2: Severe and life-threatening injuries (survival probable)
 - S3: Life-threatening injuries (survival uncertain), fatal injuries

Refined severity classes required, e.g.:
- S0, S1 remain
- S2A: Severe injuries
- S2B: Potentially life-threatening injuries
- S3A: Life-threatening injuries
- S3B: Probably fatal injuries
- S3C: Fatal injuries

Numeric scale for summation required (tbd.)
- E.g. based on Abbreviated Injury Score
Criticality of Scenarios

- **Criticality** of a scenario
 - $\sum_{h \in H} C_h \times S_h$
 - H: Set of harmful outcomes h
 - C: probability of occurrence of the outcome
 - S: severity of the outcome (injuries, fatalities)

- **Probability**
 - Classes in ISO 26262 (controllability)
 - C0: controllable in general
 - C1: Simply controllable ($\geq 99 \%$ of all drivers)
 - C2: normally controllable ($\geq 90 \%$ of all drivers)
 - C3: difficult to control or uncontrollable ($< 90 \%$ of all drivers)

- Numeric probabilities required, or refined semi-numeric scale
 - Estimated range: 10^{-10} to 1 ($= 10^0$)
Frequency of Scenarios

A logical scenario is to be weighted with two frequency figures (exposure): expected number of occurrence per time unit

- E_{driver}: average over human drivers
- E_{HAF}: automation to be tested

Together with severity and probability this fixes the risk associated with the scenario.

Determining frequencies

- E_{driver}: average over human drivers
 - Field data
 - Simulations with validated driver models
 - Adjustments/estimations by experts

- E_{HAF}: automation to be tested
 - Simulations with HAF
 - Adjustments/estimations by experts
Risk Computation Illustration
Scenario „Cut-in“:
Accident Probability

Visualization of accident probability for cut-in depending on

- $\Delta v \text{[m/sec]}$: velocity difference between Ego and Cut-in vehicle:
 - “5“ means: Cut-in vehicle is 5 m/sec slower (dangerous)

- gap [m]: gap between Cut-in and Ego vehicle
 - “1” means: Cut-in happens with minimal distance (dangerous)

$gap = \Delta p - 2$
Risk Computation Illustration
Scenario „Cut-in“:
Accident Probability

Cut-in (left, from behind)

- Step 1:
 - Velocity [m/sec]: E, L: [22]; C-E: [1,45];
 - Position [m]: L-E: [33,100]; E-C: [0,30];
 - …

- Step 2: Cut-in starts (C crosses lane marking) Δt: [2,20]
 - Velocity [m/sec]: ΔL: [-7,+7]; ΔC: [-40,+4];
 - C-E: [-5,2]; C-L: [-9,12]
 - Position [m]: L-E: [25,110]; C-E: [3,12]; L-E: [15,100]
 - …

- Step 3: Cut-in completed (C has crossed lane marking halfway) Δt: [0.5,4]
 - Velocity [Δ m/sec]: …
 - …

$\Delta v \ [m/sec]$
$\text{gap} \ [m]$
事故概率

$\text{gap} = \Delta p - 2$
Risk Computation Illustration
Scenario „Cut-in“:
Exposure

Visualization of **frequency** of cut-in depending on

- $\Delta v \text{[m/sec]}$: velocity difference between **Ego vehicle** and **Cut-in vehicle**
 - The frequency *decreases* for relatively slower **Cut-in vehicle**
 - Usually, the **Cut-in vehicle** is faster than the **Ego vehicle** (negative values of Δv)

- gap [m]: gap between **Cut-in** and **Ego vehicle**:
 - The frequency *increases* with gap size
 - Usually, the gap is reasonably large
Risk Computation Illustration
Scenario „Cut-in“:
Risk

Visualization of risk* of cut-in

- Risk is highest for
 - a rather high velocity difference
 $\Delta v \approx 4$ [m/sec]
 - A narrow (but not minimal) gap
 gap ≈ 9 [m]
 - The highly dangerous situations occur less often
- The numeric risk is to be computed as the integral of the risk function

* The severity is assumed to be constant, here
Risk Computation Illustration
Scenario „Cut-in“:
Risk Integral

Computation by approximate discrete summation

- Like Riemann integral approximation

- Each column represents the result of a test run (simulation / proving ground / field)

- Lower test density in regions with low accident probability
Test Specification and Test Definition

• The **test specification** consists of
 • The full set of **logical scenarios**
 • Annotated with **frequencies** (HAF)
 • Scenario overlap taken into account: Evolutions are counted only once

• The **test cases** of the **test definition** are **dynamically constructed**
 • **Concrete scenarios** sampling the risk function
 • Low risk: low density of sampling points
 • High risk: high density of sampling points

<table>
<thead>
<tr>
<th>Scenario Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-in (left, from behind)</td>
<td>0.04</td>
</tr>
<tr>
<td>Cut-in (left, front)</td>
<td>0.002</td>
</tr>
<tr>
<td>Cut-in (left, fall-back)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Cut-in (right, from behind)</td>
<td>0.006</td>
</tr>
<tr>
<td>Cut-through (left, from behind)</td>
<td>0.002</td>
</tr>
<tr>
<td>Cut-through (left, front)</td>
<td>0.0005</td>
</tr>
<tr>
<td>Cut-through (left, fall-back)</td>
<td>0.00001</td>
</tr>
<tr>
<td>Cut-through (right, from behind)</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

Sampling points

Sampling points
Summary

• **Test definition** based on Scenarios
 • **Functional**: high-level specification
 • **Logical**: precise specification
 • **Concrete**: test cases

• **Formalization** of test definition
 • Systematic derivation process
 • Supporting risk estimation by testing

• Usage for **safety case** along the lines of ISO 26262
 • More complex argumentation required for HAF homologation than foreseen in the standard

PD Dr. Hardi Hungar
German Aerospace Center
Institute of Transportation Systems
hardi.hungar@dlr.de
Attachment

Definition of the functions used in the risk computation illustration
Risk Computation Illustration
Scenario „Cut-in“:
Accident Probability

\[
C \approx \text{accident probability}
\]

\[
\text{gap} = \Delta p - 2
\]

\[
\max(\min(\Delta v \cdot \text{abs}(\Delta v)/(2 \cdot \text{gap}) + 3/\text{gap},5),0.5)-0.5)
\]
Risk Computation Illustration
Scenario „Cut-in“:
Exposure

\[E \approx \frac{((\Delta v - 6)^4)/4096) \times ((19^4 - (\text{abs}(\text{gap} - 20)^4)))/(19^4 - 10^4)}{\text{gap [m]}} \]
Risk Computation Illustration
Scenario „Cut-in“:
Risk

\[R \approx \left(\max(\min(\Delta v \times \text{abs}(\Delta v)/(2 \times \text{gap}) + 3/\text{gap}, 5), 0.5) - 0.5 \right) \times \left(\frac{((\Delta v - 6)^4)/4096 \times ((19^4 - (\text{abs}(\text{gap} - 20)^4))}{(19^4 - 10^4)} \right) \]